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Abstract

This paper presents a fifth-order conservative hybrid compact-WENO scheme for shock-capturing calculation. The

hybrid scheme is considered as the weighted average of two sub-schemes: the conservative compact scheme proposed by

Pirozzoli and the WENO scheme. The weight function is designed so that the abrupt transition from one sub-scheme to

another is avoided and the resulting hybrid scheme is essentially oscillation free near the flow discontinuities. A Roe

type, characteristic-wise finite difference scheme is proposed which generalizes the hybrid scheme for the scalar equation

to the system of conservation laws. Several test cases are presented to validate the proposed scheme.
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1. Introduction

In the DNS (direct numerical simulation) and LES (large eddy simulation) of turbulence as well as CAA

(computational aero-acoustics) applications, it is required that the numerical schemes be highly accurate

and capable of resolving a very broad range of length scales. If the flow fields involve shock waves, these

schemes should also be essentially oscillation free near the discontinuities. In recent years, many efforts have

been devoted to the development of high resolution shock-capturing schemes that are higher order accurate

in smooth regions.

One class of numerical schemes among them are higher order ENO [8] and WENO [9] schemes. Such

schemes have demonstrated very promising shock-capturing capabilities. However, numerical tests indicate
that these schemes are usually not optimal for computing turbulent flows and aero-acoustic fields because
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they can lead to a significant damping of the turbulent or acoustic fluctuations. Recently, there have been

attempts to improve the dissipation properties of ENO and WENO schemes. Balsara and Shu [2] have

proposed the MPWENO (monotonicity preserving WENO) scheme that is up to 11th-order accurate in
space. Garnier et al. [7] have used the dissipative part of the ENO scheme as a filter to regularize the

solution obtained by a non-dissipative scheme.

The compact schemes are very accurate in smooth regions with spectral-like resolution, but they have

been found to cause non-physical oscillations when they are applied directly to flow with discontinuities.

The non-physical oscillations (Gibbs phenomena) do not decay in magnitude when the grid is refined. Such

oscillations are usually unacceptable if an accurate solution is required, such as for direct numerical sim-

ulation of turbulence flow with shock waves. Several approaches have been proposed to overcome this

difficulty. In order to suppress the spurious oscillation and the nonlinear instability, Cockburn and Shu [4]
developed the nonlinearly stable compact schemes for shock calculations. They employed a TVB limiter to

stabilize compact schemes while maintaining the formal accuracy of the scheme. Other nonlinear compact

schemes can be found in papers of Deng and Maekawa [5], Deng and Zhang [6], and Wang and Huang [14].

In these papers, certain flux splitting or flux difference splitting shock-capturing schemes are incorporated

with the compact schemes to avoid the spurious oscillation and to achieve higher order of accuracy.

An alternative approach is to develop so-called hybrid methods in which the non-oscillatory shock-

capturing schemes are only used locally near the discontinuities and the compact schemes are used in

smooth regions. Adams and Shariff [1] have proposed the hybrid compact-ENO schemes that couples a
non-conservative compact upwind scheme with a shock-capturing ENO scheme that is turned on only

around discontinuities. Pirozzoli [10] has derived a hybrid compact-WENO scheme in which a conservative

compact scheme is developed to couple with the WENO scheme. The use of the conservative compact

scheme not only facilitates the coupling with the WENO scheme that is conservative in nature but also

makes the overall scheme to be conservative no matter what boundary closure scheme is adopted. Ac-

cording to this paper, it is shown that the overall performance of the hybrid schemes is critically affected by

the order of accuracy of the shock-capturing scheme that is employed. The WENO scheme therefore

represents a better candidate than the ENO scheme, as it yields better accuracy properties virtually at the
same price. As a result, the conservative hybrid compact-WENO scheme in general outperforms the hybrid

compact-ENO scheme of Adams and Shariff [1]. Nevertheless, both the hybrid compact-ENO scheme and

the hybrid compact-WENO scheme combine the advantages of the compact schemes in smooth regions

with a sharp representation of discontinuities. Another advantage of the hybrid methods is that they are

computationally more efficient than other nonlinear compact schemes since the computationally expensive

non-oscillatory shock-capturing schemes are used only in regions containing the discontinuities.

In the present paper, the hybrid compact-WENO scheme proposed in [10] is improved in several aspects.

The hybrid schemes [1,10] may switch abruptly from one sub-scheme (e.g., the compact scheme) to another
sub-scheme (e.g., ENO/WENO scheme) at the interfaces between the smooth regions and the disconti-

nuities. Some spurious waves might be generated at these interfaces, and these spurious waves would

eventually propagate into the smooth regions, as reported in [1]. In this paper,we consider the hybrid

scheme as the weighted average of two sub-schemes: the conservative compact scheme proposed by Pir-

ozzoli [10] and the WENO scheme. The weight function is designed to be continuous so that the abrupt

transition from one sub-scheme to another is avoided. When solving a system of hyperbolic conservation

laws such as the Euler equations of gas dynamics, Pirozzoli [10] used the Lax–Friedrichs flux splitting to

split the fluxes into positive part and negative part and the numerical flux functions were evaluated in a
component by component manner. Although this approach is quite simple and efficient, its resolution

power is not as good as the characteristic decomposition approach, and it can cause an excessive smearing

of the shear waves. In the present paper, a characteristic-wise hybrid compact-WENO scheme is proposed

which couples the Roe type, characteristic-wise compact sub-scheme and the Roe type characteristic-wise

WENO scheme proposed by Jiang and Shu [9]. In order to remove the entropy violating solutions and the
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shock instabilities such as the ‘‘carbuncle’’ and the ‘‘odd-even decoupling’’ phenomena associated with the

Roe type scheme, an improved entropy fix procedure based on the ‘‘H-correction’’ [11] is adopted . For the

present characteristic-wise hybrid compact-WENO scheme, when evaluating the flux functions of a system
of conservation laws, we need to solve one or more block-tridiagonal systems of linear equations rather

than tridiagonal systems of linear equations. Therefore, the present scheme is computationally more

expensive than the Pirozzoli [10] scheme. However, numerical tests show a significant improvement in

resolution for flows with complex structures.

The paper is organized as follows. In Section 2, the hybrid compact-WENO scheme is formulated for the

scalar conservation law , and the design and the performance of the weight functions are discussed. In

Section 3, the characteristic-wise hybrid compact-WENO scheme for the Euler equations of gas dynamics is

presented. In Section 4, the hybrid scheme is applied to a number of benchmark test cases. The conclusion
remarks are given in Section 5.
2. The hybrid compact-WENO scheme for scalar conservation laws

2.1. The governing equation and the finite difference scheme

Consider the scalar hyperbolic conservation law given by

ou
ot

þ of
ox

¼ 0 ð1Þ

with proper initial and boundary conditions, where f ¼ f ðuÞ. By the hyperbolicity of Eq. (1), of =ou is a real
function of u. Let fIjg be a uniform partition of the solution domain in space, where Ij ¼ ½xj�1=2; xjþ1=2� and
xjþ1=2 � xj�1=2 ¼ h. The semi-discrete conservative finite difference scheme of Eq. (1) can be written as

ouj
ot

þ 1

h
f̂fjþ1=2

�
� f̂fj�1=2

�
¼ 0; ð2Þ

where f̂fjþ1=2 is the numerical flux function. If

1

h
f̂fjþ1=2

�
� f̂fj�1=2

�
¼ of

ox

� �
j

þOðhkÞ; ð3Þ

this scheme is kth order accurate in space.
In the present work, the time integration is performed by means of a three-stage, TVD Runge–Kutta

scheme [13]. Defining

LjðuÞ ¼ � 1

h
f̂fjþ1=2

�
� f̂fj�1=2

�
;

then this scheme is given by

uð1Þj ¼ unj þ DtLjðunÞ;
uð2Þj ¼ 3

4
unj þ

1

4
uð1Þj þ 1

4
DtLjðuð1ÞÞ;
unþ1
j ¼ 1

3
unj þ

2

3
uð2Þj þ 2

3
DtLjðuð2ÞÞ:
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2.2. The conservative upwind compact scheme

For k ¼ 5 in Eq. (3), the numerical flux function in Eq. (2) can be computed by using the fifth-order

conservative upwind compact scheme proposed by Pirozzoli [10]:

1

2
f̂fj�1=2 þ f̂fjþ1=2 þ

1

6
f̂fjþ3=2 ¼

1

18
fj�1 þ

19

18
fj þ

5

9
fjþ1 if ~aajþ1=2 P 0; ð4aÞ
1

6
f̂fj�1=2 þ f̂fjþ1=2 þ

1

2
f̂fjþ3=2 ¼

5

9
fj þ

19

18
fjþ1 þ

1

18
fjþ2 if ~aajþ1=2 < 0; ð4bÞ

where ~aajþ1=2 is the numerical wave speed defined by

~aajþ1=2 ¼
f̂fjþ1�f̂fj
ujþ1�uj

if ujþ1 � uj 6¼ 0;
of
ou

� �
j
; otherwise:

8<
:

Denoting sjþ1=2 ¼ signð~aajþ1=2Þ, Eqs. (4a) and (4b) can be combined into a unified form:

/jþ1=2f̂fj�1=2 þ f̂fjþ1=2 þ wjþ1=2f̂fjþ3=2 ¼ b̂bjþ1=2; ð5Þ

where

/jþ1=2 ¼
1

3
þ sjþ1=2

6
; wjþ1=2 ¼

1

3
� sjþ1=2

6
;

and

b̂bjþ1=2 ¼
1þ sjþ1=2

2

� �
1

18
fj�1

�
þ 19

18
fj þ

5

9
fjþ1

�
þ 1� sjþ1=2

2

� �
5

9
fj

�
þ 19

18
fjþ1 þ

1

18
fjþ2

�
:

The order of accuracy and the dispersion/dissipation properties of Eq. (5) have been discussed in detail in

[10] and will not be repeated here. In the present paper, we also use the same boundary schemes corre-

sponding to Eq. (5) that have been reported in [10].

2.3. The WENO scheme

The numerical flux function in Eq. (2) can also be evaluated by the fifth-order finite difference WENO

scheme of Jiang and Shu [9]. For completeness, the formulations of this WENO scheme will be given as

follows.

The numerical flux function of the fifth-order WENO scheme can be expressed as

f̂fWENO
jþ1=2 ¼

X2
c¼0

xcf
c
jþ1=2;

where f c
jþ1=2 is obtained by a second-order polynomial reconstruction of f ðuðxjþ1=2ÞÞ on cth set of candidate

stencils Sc. For c ¼ 0, 1, and 2, Sc will cover all possible stencils including the grid point that one point

upwind to xjþ1=2. For each c, xc is the weight that satisfies the condition

xc P 0;
X2
c¼0

xc ¼ 1:
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In [9], xc is computed using

xc ¼
dc

ð�þ bcÞ
2

,X2
l¼0

dl
ð�þ blÞ

2
;

where dc is a coefficient that guarantees the overall scheme is fifth-order accurate in space, bc is the

smoothness indicator and � is a small positive number to avoid divisions by zero. For ~aajþ1=2 P 0, we have

d0 ¼ 0:3, d1 ¼ 0:6, and d2 ¼ 0:1. And f c
jþ1=2, bc ðc ¼ 0; 1; 2Þ can be computed, respectively, by

f 0
jþ1=2 ¼

1

3
fj þ

5

6
fjþ1 �

1

6
fjþ2;
f 1
jþ1=2 ¼ � 1

6
fj�1 þ

5

6
fj þ

1

3
fjþ1;
f 2
jþ1=2 ¼

1

3
fj�2 �

7

6
fj�1 þ

11

6
fj

and

b0 ¼
13

12
ðfj � 2fjþ1 þ fjþ2Þ2 þ

1

4
ð3fj � 4fjþ1 þ fjþ2Þ2;
b1 ¼
13

12
ðfj�1 � 2fj þ fjþ1Þ2 þ

1

4
ðfj�1 � fjþ1Þ2;
b2 ¼
13

12
ðfj�2 � 2fj�1 þ fjÞ2 þ

1

4
ðfj�2 � 4fj�1 þ 3fjÞ2:

For ~aajþ1=2 < 0, we have d0 ¼ 0:1, d1 ¼ 0:6, and d2 ¼ 0:3. The formulations for f c
jþ1=2, bc (c ¼ 0; 1; 2)

become

f 0
jþ1=2 ¼

11

6
fjþ1 �

7

6
fjþ2 þ

1

3
fjþ3;
f 1
jþ1=2 ¼

1

3
fj þ

5

6
fjþ1 �

1

6
fjþ2;
f 2
jþ1=2 ¼ � 1

6
fj�1 þ

5

6
fj þ

1

3
fjþ1

and

b0 ¼
13

12
fjþ1

�
� 2fjþ2 þ fjþ3

�2 þ 1

4
3fjþ1

�
� 4fjþ2 þ fjþ3

�2
;

b1 ¼
13

12
fj
�

� 2fjþ1 þ fjþ2

�2 þ 1

4
fj
�

� fjþ2

�2
;

b2 ¼
13

12
fj�1

�
� 2fj þ fjþ1

�2 þ 1

4
fj�1

�
� 4fj þ 3fjþ1

�2
:
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2.4. The hybrid compact-WENO scheme

The compact scheme given in Eq. (5) gives very satisfactory results if the solution is smooth everywhere.

However, the Gibbs phenomena will occur when there are discontinuities in the solution. The Gibbs phe-

nomenawill contaminate the solution andmay lead to nonlinear instability. In order to cure this deficiency, the

hybrid schemes have been proposed [1,10] in which the compact scheme is coupled with the ENO or WENO

scheme. As a result, in the hybrid method, the compact scheme is applied segment by segment in the smooth

regions. Near the discontinuities that separate the smooth regions, the ENO/WENO scheme is used instead.

Theoretically, this is a quite natural approach since by its derivation, the linear compact scheme assumes the

global smoothness of the solution and therefore cannot be applied across the discontinuities where the shock-
capturing schemes are necessary in order to suppress the non-physical oscillations. In the present paper, we

consider the hybrid scheme as the weighted average of two sub-schemes: the conservative compact scheme

presented in Section 2.2 and the WENO [9] scheme. This scheme can be written in the following form:

rjþ1=2/jþ1=2f̂fj�1=2 þ f̂fjþ1=2 þ rjþ1=2wjþ1=2f̂fjþ3=2 ¼ ĉcjþ1=2; ð6Þ

where rjþ1=2 is the weight and

ĉcjþ1=2 ¼ rjþ1=2b̂bjþ1=2 þ ð1� rjþ1=2Þf̂fWENO
jþ1=2 :

Eq. (6)will reduce to the compact scheme ifrjþ1=2 ¼ 1 and to theWENOscheme ifrjþ1=2 ¼ 0.According to the

spirit of the hybrid scheme, it is necessary that theweight be directly related to the smoothness of the numerical

solution. Therefore, a smoothness indicator rjþ1=2 must be defined and the weight should be a function of
frjþ1=2g. In [10], the smoothness indicator is simply defined to be rjþ1=2 ¼ jfjþ1 � fjj, andrjþ1=2 is determined by

rjþ1=2 ¼
1 if rj�1=2 6 ~rrc and rjþ1=2 6 ~rrc and rjþ3=2 6 ~rrc;
0; otherwise;

�
ð7Þ

where ~rrc is a threshold value that is usually problem-dependent. This smoothness indicator and the cor-

responding weight produce very good numerical results [1,10]. However, using the weight in Eq. (7), the

hybrid scheme may switch abruptly from one sub-scheme to another sub-scheme at the interfaces between

the smooth regions and the discontinuities.
In the present paper, the smoothness indicator is designed to be

rjþ1=2 ¼ minðrj; rjþ1Þ; ð8Þ

where

rj ¼
j2Dfjþ1=2Dfj�1=2j þ e

ðDfjþ1=2Þ2 þ ðDfj�1=2Þ2 þ e
; ð9Þ

and Dfjþ1=2 ¼ fjþ1 � fj. The e is a positive real number to avoid possible division by zero. It is apparent that

rjþ1=2 2 ½0; 1� and this will facilitate the choice of the threshold value rc (see Eq. (11)). We note that other

forms of the smoothness indicator have also been used in [7,16]. In order to avoid the non-smooth tran-
sition between the sub-schemes, the weight can be defined as a smooth function of the smoothness indi-

cator. A very simple choice is

rjþ1=2 ¼ rjþ1=2: ð10Þ

This weight is very robust and produces numerical results without spurious oscillations. However, the

resulting hybrid scheme is less efficient than using Eq. (7) because the WENO scheme is needed everywhere.

On the other hand, when using Eq. (7), the WENO scheme is applied only at places where r ¼ 0. Numerical
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tests also indicate that the hybrid scheme using this weight is slightly more dissipative than that using Eq.

(7) with a proper choice of ~rrc. To make a compromise between the robustness and the efficiency as well as

accuracy, we suggest that the weight be a continuous rather than a smooth function of the smoothness
indicator that takes the following form:

rjþ1=2 ¼ min 1;
rjþ1=2

rc

� �
: ð11Þ

In this case, the WENO scheme is not needed when r ¼ 1 and when a smaller threshold value rc is chosen,
the hybrid scheme will become less dissipative. For the purpose of future reference, we denote the weight

defined in Eqs. (7) and (11), respectively, by Weight A and Weight B. We note Weight B will reduce to the

weight in Eq. (10) when rc ¼ 1.

Remark. In the LES and DNS of turbulence flows, there is a possibility that in Eq. (9), both jDfjþ1=2j and
jDfj�1=2j are physically very small due to turbulent fluctuations but their ratio jDfjþ1=2j=jDfj�1=2j is much

larger or smaller than unity. In this case, the smoothness indicator Eq. (8) will be very small and the weight

of the more dissipative WENO sub-scheme is likely to be larger than that of the compact sub-scheme at the

interface jþ 1=2. For Weight B, this shortcoming can be easily overcome by a proper design of e in Eq. (9).

In this paper, we choose

e ¼ 0:9rc
1� 0:9rc

n2; ð12Þ

where n is a user specified positive number. It can be easily verified that when

maxðjDfj�1=2j; jDfjþ1=2j; jDfjþ3=2jÞ6 n;

we always have

rjþ1=2 P 0:9

and therefore the compact sub-scheme will dominate the hybrid scheme . It is also clear that n acts as a

threshold value. All fluctuations smaller than this value will be considered as turbulent fluctuations and will

not be damped by using the WENO scheme. In the present paper, only the inviscid flow is simulated. The

value of n is therefore set arbitrarily to 10�3.

2.5. The performance of weight functions

In order to test the performance of these weight functions, the hybrid compact-WENO (Eq. (5)) is

applied to solve the linear advection equation

ou
ot

þ ou
ox

¼ 0

numerically using Weight A and Weight B, respectively. The initial conditions are

uðx; 0Þ ¼
1; �16 x < �0:5;
sin½pðxþ 0:5Þ�; �0:56 x < 0:5;
1; 0:56 x6 1;

8<
: ð13Þ

and the periodic boundary conditions are used at x ¼ �1. The solution has been computed on N ¼ 100

uniform grids using a Courant number CFL ¼ 0:5.
The numerical results at t ¼ 2 are shown in Fig. 1. Specifically, Fig. 1(a) shows the results obtained using

Weight A with ~rrc ¼ 0:1 and ~rrc ¼ 0:3. It is clear that the scheme predicts the solution very accurately in the
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smooth regions and the discontinuities can be captured in high resolution. However, the numerical oscil-

lations are observed near the discontinuities. Fig. 1(b) reports the numerical results using Weight B and the

threshold value rc is chosen as 1.0, 0.3, and 0.1, respectively. It can be seen that with the decrease of rc,
higher resolution can be achieved. The numerical result produced by using Weight B with rc ¼ 0:3 is in

similar resolution to that produced by using Weight A with ~rrc ¼ 0:3. However, no numerical oscillations
occur using Weight B. Generally speaking, there is a lower bound of rc in Weight B that will produce an

oscillation-free solution. No theoretical result is currently available for this lower bound and it has to be

determined through numerical experiments. In the present test case, this lower bound is around 0.2 ac-

cording to the numerical experiments. It can be concluded from this comparison that Weight B with a

proper choice of rc (that is in general problem dependent) yields the overall best numerical results. In the

following sections, we choose Weight B only as the weight function in the hybrid scheme.

To illustrate the behavior of the weight function more clearly, we have also performed the static re-

construction to Eq. (13). The distributions of the weight functions with rc ¼ 1, rc ¼ 0:3, and rc ¼ 0:1 are
plotted in Fig. 2. Near the discontinuities, the weights are smaller than unity and the WENO scheme will be

invoked at these interfaces. The width of the degeneracy is around 2–3 points depending on the value of rc.
When rc ¼ 0:3 and rc ¼ 0:1, we have r ¼ 1 in smooth regions. However, when rc ¼ 1 is used, the degen-

eracy also happens in the smooth region near the extremum. This fact explains why the hybrid scheme will

become more dissipative when a larger threshold value rc is chosen.
3. The hybrid compact-WENO scheme for the Euler equations of gas dynamics

3.1. The Euler equations of gas dynamics

In this section, the hybrid compact-WENO scheme will be extended to solve systems of hyperbolic

conservation laws. Specifically, we are interested in the Euler equations of gas dynamics which, in one-

dimensional case, can be written in the following conservation form:
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oU

ot
þ oF

ox
¼ 0; ð14Þ

where

U ¼
q
qu
qE

2
4

3
5; F ¼

qu
qu2 þ p
quH

2
4

3
5;

H ¼ E þ p=q is the enthalpy. This set of equations are closed by the equation-of-state of ideal gas

p ¼ ðc� 1ÞqðE � u2=2Þ:

For Eq. (14), the Jacobian matrix A ¼ oF
oU

has three real eigenvalues

kð1Þ ¼ u� a; kð2Þ ¼ a; kð3Þ ¼ uþ a;

where a ¼ ðcpq Þ
1=2

is the speed of sound and a complete set of independent right eigenvectors

rð1Þ ¼
1

u� a
H � ua

2
4

3
5; rð2Þ ¼

1

u
u2=2

2
4

3
5; rð3Þ ¼

1

uþ a
H þ ua

2
4

3
5: ð15Þ

We denote the matrix whose columns are eigenvectors in Eq. (15) by

R ¼ ðrð1Þ; rð2Þ; rð3ÞÞ;

and denote L ¼ R�1. Then it is easy to show

LAR ¼ K;

where K is the diagonal matrix K ¼ diagðkð1Þ; kð2Þ; kð3ÞÞ. Notice the row vectors of L, denoted by lð1Þ; lð2Þ; lð3Þ

are left eigenvectors of A:

lðiÞA ¼ kðiÞlðiÞ; i ¼ 1; 2; 3:



374 Y.-X. Ren et al. / Journal of Computational Physics 192 (2003) 365–386
3.2. The finite difference scheme

As in the scalar case, the semi-discrete conservative finite difference scheme of Eq. (14) can be written as

oUj

ot
þ 1

h
F̂Fjþ1=2

�
� F̂Fj�1=2

�
¼ 0; ð16Þ

where F̂Fjþ1=2 is the numerical flux function. In this section, we are going to design the spatially fifth-order

finite difference equations for the Euler equations that satisfying

1

h
F̂Fjþ1=2

�
� F̂Fj�1=2

�
¼ oF

ox

� �
j

þOðh5Þ:

The time integration is performed again by means of a three-stage, TVD Runge–Kutta scheme similar to

the scalar case.
3.3. The hybrid compact-WENO scheme for the Euler equations

When solving the Euler equations, Pirozzoli [10] used the Lax–Friedrichs flux splitting to split the fluxes

into positive part and negative part. The resulting hybrid scheme solves the Euler equations in a component
by component manner. This approach works reasonably well for many problems. However, for more

demanding test problems, it is usually advisable to use the more costly but much sounder approach based

on the characteristic decompositions [12]. In the present paper, a characteristic-wise hybrid compact-

WENO scheme is proposed which couples the Roe type, characteristic-wise compact sub-scheme with the

characteristic-wise WENO sub-scheme proposed by Jiang and Shu [9]. The evaluation of the numerical flux

functions for the characteristic-wise hybrid compact-WENO scheme consists the following steps:

1. At each fixed xjþ1=2, the average state Ujþ1=2 is computed by the simple mean

Ujþ1=2 ¼
1

2
Uj

�
þUjþ1

�
;

or the Roe average.

2. The eigenvalues kðiÞjþ1=2 ði ¼ 1; 2; 3Þ and the left eigenvectors l
ðiÞ
jþ1=2 ði ¼ 1; 2; 3Þ are computed in terms of

Ujþ1=2.

3. The local characteristic decompositions of the flux functions at xm ðm ¼ j� 1; . . . ; jþ 2Þ are computed

using

wðiÞ
m ¼ l

ðiÞ
jþ1=2Fm; i ¼ 1; 2; 3; m ¼ j� 1; . . . ; jþ 2:

4. By defining

sðiÞjþ1=2 ¼ sign kðiÞjþ1=2

� �
;

rðiÞjþ1=2 ¼ min rðiÞj ; rðiÞjþ1

� �
;

rðiÞj ¼
j2DwðiÞ

jþ1=2Dw
ðiÞ
j�1=2j þ e

DwðiÞ
jþ1=2

� �2
þ DwðiÞ

j�1=2

� �2
þ e

;
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and

rðiÞ
jþ1=2 ¼ min 1;

rðiÞjþ1=2

rc

 !

for i ¼ 1, 2, and 3, the hybrid compact-WENO scheme for the scalar equation (Eq. (5)) can be applied

to the local characteristic variables wðiÞ ði ¼ 1; 2; 3Þ as
rðiÞ
jþ1=2/

ðiÞ
jþ1=2ŵw

ðiÞ
j�1=2 þ ŵwðiÞ

jþ1=2 þ rðiÞ
jþ1=2w

ðiÞ
jþ1=2ŵw

ðiÞ
jþ3=2 ¼ ĉcðiÞjþ1=2; ð17Þ

where

/ðiÞ
jþ1=2 ¼

1

3
þ
sðiÞjþ1=2

6
; wðiÞ

jþ1=2 ¼
1

3
�
sðiÞjþ1=2

6
;

ĉcðiÞjþ1=2 ¼ rðiÞ
jþ1=2b̂b

ðiÞ
jþ1=2 þ 1

�
� rðiÞ

jþ1=2

�
ŵwðiÞ;WENO

jþ1=2 ; ð18Þ

and

b̂bðiÞjþ1=2 ¼
1þ sðiÞjþ1=2

2

 !
1

18
wðiÞ

j�1

�
þ 19

18
wðiÞ

j þ 5

9
wðiÞ

jþ1

�
þ

1� sðiÞjþ1=2

2

 !
5

9
wðiÞ

j

�
þ 19

18
wðiÞ

jþ1 þ
1

18
wðiÞ

jþ2

�
;

ŵwðiÞ;WENO

jþ1=2 in Eq. (18) is computed using the characteristic-wise finite difference WENO scheme of Roe

type [9,12]. It should be noted that for fixed i, Eq. (17) cannot be solved directly since the ŵwðiÞ
jþ1=2 is defined

locally. In the following step, Eq. (17) for all characteristic fields will be arranged in to a block-tridiagnal

system of equations that can be solved to obtain the numerical flux in the physical space.

5. For i ¼ 1, 2, and 3, Eq. (17) can be written as

Ujþ1=2F̂Fj�1=2 þ Ljþ1=2F̂Fjþ1=2 þWjþ1=2F̂Fjþ3=2 ¼ ĉcjþ1=2; ð19Þ
where

Ujþ1=2 ¼
rð1Þ
jþ1=2/

ð1Þ
jþ1=2l

ð1Þ
jþ1=2

rð2Þ
jþ1=2/

ð2Þ
jþ1=2l

ð2Þ
jþ1=2

rð3Þ
jþ1=2/

ð3Þ
jþ1=2l

ð3Þ
jþ1=2

2
664

3
775;
Ljþ1=2 ¼
l
ð1Þ
jþ1=2

l
ð2Þ
jþ1=2

l
ð3Þ
jþ1=2

2
664

3
775;
Wjþ1=2 ¼
rð1Þ
jþ1=2w

ð1Þ
jþ1=2l

ð1Þ
jþ1=2

rð2Þ
jþ1=2w

ð2Þ
jþ1=2l

ð2Þ
jþ1=2

rð3Þ
jþ1=2w

ð3Þ
jþ1=2l

ð3Þ
jþ1=2

2
664

3
775;

and

ĉcjþ1=2 ¼
ĉcð1Þjþ1=2

ĉcð2Þjþ1=2

ĉcð3Þjþ1=2

2
664

3
775:
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Clearly, Eq. (19) and additional boundary closures form a block-tridiagnal system of equations which

can be solved to obtain F̂Fjþ1=2.

It is straightforward to extend the one-dimensional characteristic-wise hybrid compact-WENO scheme
to the multi-dimensional cases. We omit this derivation in the present paper for brevity.

We now give some remarks concerning the implementation and the efficiency of the characteristic-wise

hybrid compact-WENO scheme.

Remark 1. The WENO sub-scheme plays an important role in the hybrid scheme. We basically use the Roe

type characteristic-wise WENO scheme [9] in the hybrid method. The Roe type WENO scheme is less

dissipative and thus achieves higher resolution than the WENO scheme based on the flux vector splitting,

which is especially true in capturing the contact discontinuities and shear layers in viscous flows. However,

the Roe type WENO scheme admits rarefaction shocks that do not satisfy the entropy condition. There-

fore, certain entropy fix procedure is needed. In [9], the Roe type local characteristic-wise WENO flux with

entropy fix is evaluated with

ŵwðiÞ;WENO

jþ1=2 ¼
ŵwðiÞ;WENO�Roe

jþ1=2 if kðiÞj kðiÞjþ1 > 0;

ŵwðiÞ;WENO�LF

jþ1=2 ; otherwise:

8<
: ð20Þ

In Eq. (20), the WENO-Roe and WENO-LF stand for the original Roe type WENO flux and WENO flux

based on the Lax–Friedrich flux splitting. The detailed formulations can be found in [12] and will not be

repeated here. This entropy fix procedure is very successful and always yields the correct entropy solution

according to the numerical tests. However, this entropy fix procedure is not sufficient to cure the ‘‘odd-even

decoupling’’ and the ‘‘carbuncle’’ phenomenon that may occur in some multi-dimensional problems in-
volving strong normal shocks. In order to eliminate such kind of shock instabilities, we propose to use the

‘‘H-correction’’ procedure [11] in the framework of characteristic-wise hybrid scheme in the present paper.

For two-dimensional problems, the characteristic-wise WENO flux at interface ðjþ 1=2; kÞ is computed

according to:

ŵwðiÞ;WENO

jþ1=2;k ¼
ŵwðiÞ;WENO�Roe

jþ1=2;k if min jkðiÞj;kj; jk
ðiÞ
jþ1;kj

� �
P gjþ1=2;k;

ŵwðiÞ;WENO�LF

jþ1=2;k ; otherwise:

8<
: ð21Þ

In Eq. (21), gjþ1=2;k is determined by

gjþ1=2;k ¼ max gxjþ1=2;k; g
y
j;k�1=2; g

y
j;kþ1=2; g

y
jþ1;k�1=2; g

y
jþ1;kþ1=2

� �
;

where

gxjþ1=2;k ¼ jujþ1;k � uj;kj þ jajþ1;k � aj;kj;
gyj;kþ1=2 ¼ jvj;kþ1 � vj;kj þ jaj;kþ1 � aj;kj;

and aj;k is the speed of sound at grid point ðj; kÞ. Our numerical experiments indicate that this approach

works well in removing the shock instabilities.

Remark 2. The Weight B defined in Section 2 is adopted in the hybrid scheme for Euler equations. The

smoothness indicator for each characteristic field is computed in terms of local characteristic variables.

Although we can use a simpler approach to evaluate the smoothness properties on the basis of the density

or Mach number for all characteristic fields, superior numerical results are obtained by using the present
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method. The choice of rc in the weight is important in the hybrid scheme. When a very small rc is chosen,
the computation may break down due to negative pressure and/or density for some test cases. Numerical

experiments indicate that optimal results can be obtained when rc is chosen between 0.3 and 0.5. Theo-
retically, different rc can be used for different characteristic fields, but this is not tested in the present paper

and we will use the same rc for all characteristic fields.

Remark 3. To compute the flux function F̂Fjþ1=2 in Eq. (19), we need to solve a block tridiagnal system of

equations. Although there is an efficient direct method to solve this system of equations, it turns out that

the characteristic-wise hybrid compact-WENO scheme is computationally more expensive than the com-

ponent-wise hybrid compact-WENO scheme in which only tridiagnal systems of equations need to be

solved. According to our codes, the component-wise scheme is about twice more efficient than the char-

acteristic-wise scheme. Nevertheless, the characteristic-wise scheme can yield better numerical results than

the component-wise scheme, which compensates its cost to a large extent.
4. Numerical tests

In the present section, we discuss the application of the characteristic-wise hybrid compact-WENO

scheme for some benchmark cases in both one and two dimensions. For the scalar case, the present hybrid

compact-WENO scheme is basically identical to the hybrid scheme of Pirozzoli [10] except that different

smoothness indicator and weight function are used. Since the influences of the smoothness indicators and
weight functions for the scalar equation have been studied in Section 2.5, we therefore focus on the Euler

equations of gas dynamics in the present section. For all test cases, Weight B is chosen as the weight

function.

4.1. Shu–Osher problem

The following test case is taken from [13]. The governing equations are the one-dimensional Euler

equations and the initial conditions are

ðq; u; pÞ ¼ ð3:857143; 2:629369; 10:333333Þ if x < 1;
ð1þ 0:2 sinð5x� 5Þ; 0; 1Þ if xP 1:

�

Physically, this problems represents that a Mach 3 shock interacts with a density disturbance which will

generate a flow field with both smooth structure and discontinuities. The solution is advanced in time up

to t ¼ 1:8 on the computational domain x 2 ½0; 10�. The grid number is N ¼ 200. The time step is

determined by

Dt ¼ CFL
h

maxjðjujj þ ajÞ

with a Courant number CFL ¼ 0:5. Numerical results of the density distribution computed using WENO

and characteristic-wise hybrid compact-WENO scheme are shown in Fig. 3. The solid line in this figure is

obtained by computing the same problem using the WENO scheme with N ¼ 2000 grid points, which is

considered to be the ‘‘exact’’ solution although the real exact solution is not known for this problem. By

comparing Fig. 3(a) with Figs. 3(b)–(d), it is clear that the hybrid scheme demonstrates superior resolution

over the WENO scheme in reproducing the correct flow features downstream of the shock. Specifically, the

WENO scheme produces a rather poor result in predicting the post-shock entropy waves, whereas these
waves can be captured more clearly using the hybrid scheme. The threshold value rc in the weight has a



Fig. 3. Shu–Osher problem, distribution of density for N ¼ 200, t ¼ 1:8. (a) Characteristic-wise WENO scheme. (b) Component-wise

hybrid compact-WENO scheme, rc ¼ 1:0. (c) Characteristic-wise hybrid compact-WENO scheme, rc ¼ 0:5. (d) Characteristic-wise

hybrid compact-WENO scheme, rc ¼ 0:3.

Fig. 4. Density contours of double Mach reflection problem, 50 equally spaced contour levels, 800� 200 grid points, t ¼ 0:2. Char-

acteristic-wise hybrid compact-WENO scheme, Roe type, with the modified entropy fix , rc ¼ 0:4.
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significant influence on the resolution property of the hybrid scheme. Generally speaking, using smaller rc,
higher resolution can be achieved. When rc is sufficiently small, the numerical results is insensitive to rc. For
example, the numerical results for rc ¼ 0:3 is quite similiar to that for rc ¼ 0:218. However, when we choose

rc < 0:218 in this case, negative pressure or density will occur and the computation will break off.
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4.2. Double Mach reflection

This is a two-dimensional test case for high resolution schemes [15]. The computational domain for this

problem is ½0; 4� � ½0; 1� and a wall lies on the bottom of the computational domain starting from x ¼ 1=6.
Initially, a right-moving Mach 10 shock is positioned across ðx ¼ 1=6; y ¼ 0Þ and makes a 60� angle with

the x-axis. 800� 200 grid points are used in the computation. The time step is computed according to

Dt ¼ CFL
DtxDty

Dtx þ Dty
;

where

Dtx ¼
Dx

maxj;kðjuj;kj þ aj;kÞ
;

Fig. 5. The enlarged portion of Fig. 4 near the Mach stems.

Fig. 6. Density contours of double Mach reflection problem, 50 equally spaced contour levels, 800� 200 grid points, t ¼ 0:2. Char-

acteristic-wise hybrid compact-WENO scheme, Roe type, with the original entropy fix, rc ¼ 0:5.



Fig. 8. Density contours of d

380Y.-X. Ren et
Dty ¼
Dy

maxj;kðjvj;kj þ aj;kÞ
:

The Courant number is set to CFL ¼ 0:5 in the computation. The solution is advanced in time up to
t ¼ 0:2.

This test case is difficult for Riemann solver-based flux difference splitting schemes such as Roe

scheme because when the grid is fine enough, the ‘‘carbuncle phenomenon’’ will happen near the

stronger mach stem that is a nearly normal shock. To cure this problem, the modified H-correction

procedure in Eq. (21) is used in the characteristic-wise hybrid compact-WENO scheme. The numerical

result of density contours for rc ¼ 0:4 is shown in Figs. 4 and 5. During the computation, the fluxes are

computed using the compact scheme on most cell interfaces. The percentage of interfaces on which the

WENO fluxes are needed varies from 0.9% to 7.4% at different time. When the original entropy fix in
Eq. (20) is used and rc ¼ 0:4, negative density occurs in the numerical solution and the result for rc ¼ 0:5
is shown in Figs. 6 and 7 instead. Even with a larger rc, the shock instability can still be observed in
Fig. 7. The enlarged portion of Fig. 6 near the Mach stems.

ouble Mach reflection problem, 50 equally spaced contour levels, 800�200 grid points,t¼0:2. Com-ponent-wise hybrid compact-WENO scheme, flux splitting type,rc¼0:424

al. / Journal of Computational Physics 192 (2003) 365–386
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these figures. For the purpose of comparison, the density contours computed using the component-wise

hybrid compact-WENO scheme and the WENO scheme with the modified H-correction procedure are

depicted in Figs. 8, 9 and 10, 11, respectively. From these figures, it is evident that the characteristic-wise
hybrid scheme achieves higher resolution in the numerical results than both the component-wise hybrid

scheme and the characteristic-wise WENO scheme, especially in the region near the Mach stems where

the characteristic-wise hybrid scheme can capture the rollup of the slip line more clearly. It should be

noted that the weight function used in the present component-wise hybrid scheme is Weight B in terms

of the density difference for all components which is different with the Pirozzoli scheme. When rc ¼ 0:4,
the present component-wise hybrid scheme also produce negative density and the numerical results

presented in Figs. 8 and 9 are obtained using rc ¼ 0:42. On the other hand, no negative density and

pressure will occur in the numerical solution of the characteristic-wise hybrid scheme even when the
threshold value rc is chosen as smaller as 0.3.
Fig. 9. The enlarged portion of Fig. 8 near the Mach stems.

Fig. 10. Density contours of double Mach reflection problem, 50 equally spaced contour levels, 800� 200 grid points, t ¼ 0:2.

Characteristic-wise WENO scheme, Roe type, with the modified entropy fix.



Fig. 11. The enlarged portion of Fig. 10 near the Mach stems.

Fig. 122 Density contours of the shock-vortex interaction problem, 30 equally spaced contour levels, 200�300 grid points,t¼1:538.Characteristic-wise hybrid compact-WENO scheme, Roe type, with the modified entropy fix,rc¼0:4.

382Y.-X. Ren et al. / Journal of Computational Physics 192 (2003) 365–386



Fig. 13. The enlarged portion of Fig. 12 near the vortex with 60 equally spaced contour levels.

Fig. 14. Density contours of the shock-vortex interaction problem, 30 equally spaced contour levels, 200� 300 grid points, t ¼ 1:538.

Component-wise hybrid compact-WENO scheme, flux splitting type, rc ¼ 0:4.

Y.-X. Ren et al. / Journal of Computational Physics 192 (2003) 365–386 383
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4.3. The shock–vortex interactions

The flow conditions of this test case are based on [3]. The computational domain is ½�2; 2� � ½�3; 3�. At

t ¼ 0, a left-moving Mach 1.5 planar shock is placed at x ¼ 1:66. Ambient conditions are prescribed to the

left of the shock with the velocity being perturbed by a compressible vortex centered at ðx; yÞ ¼ ð0; 0Þ. To
the right of the shock, the flow variables are determined according to the Rankine–Hugoniot relations. The

vortex is modeled by

UhðrÞ ¼
Uc; r < 0:5;
2=3Ucð�r þ 1=rÞ; 0:56 r6 1;

�

where Uh is the tangential velocity, r is the distance from the vortex center, and Uc is set to be the velocity

behind the shock wave. The characteristic boundary conditions based on the Riemann invariants are used at

the left and right boundaries and the periodic conditions are prescribed at the top and bottom boundaries.

The domain is discretized into a 200� 300 uniform grid. The Courant number is set to CFL ¼ 0:5.
This test case is computed using the characteristic-wise hybrid compact-WENO scheme ðrc ¼ 0:4Þ, the

component-wise flux splitting hybrid compact-WENO scheme ðrc ¼ 0:4Þ and the WENO scheme. The

density contours at t ¼ 1:538 are shown in Figs. 12, 14, and 16, respectively. The enlarged portions of

these figures near the vortex center are shown, respectively in Figs. 13, 15, and 17. For the characteristic-

wise hybrid scheme, the percentage of interfaces on which the WENO fluxes are needed is around 1.5–

2.1% during the simulation. At t ¼ 1:538, the interactions between the shock wave and the vortex

produce a Mach structure. This structure can be correctly captured by all these three schemes. The

resolution power of the component-wise hybrid scheme is slightly better than the WENO scheme

whereas the characteristic-wise hybrid scheme performs best in resolving the shock waves as well as the
contact discontinuities. According to the numerical results, the moving shock can be captured with two

5. The enlarged portion of Fig. 14 near the vortex with 60 equallyspaced contour levels.384Y.-X. Ren et al. / Journal of Computational Physics 192 (2033) 365–386



Fig. 16. Density contours of the shock-vortex interaction problem, 30 equally spaced contour levels, 200� 300 grid points, t ¼ 1:538.

Characteristic-wise WENO scheme, Roe type, with the modified entropy fix.

Fig. 17. The enlarged portion of Fig. 16 near the vortex with 60 equally spaced contour levels.
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or three cells using the characteristic-wise hybrid scheme and three or four cells are needed by the

WENO scheme to resolve this shock wave.
5. Conclusions

In this paper, several improvements have been proposed to the hybrid compact-WENO scheme [10].

Firstly, we consider the hybrid scheme as the weighted average of two sub-schemes: the conservative

compact scheme proposed by Pirozzoli [10] and the WENO scheme. A continuous weight function is de-

signed so that the abrupt transition from one sub-scheme to another is avoided. Secondly, when solving a
system of hyperbolic conservation laws such as the Euler equations of gas dynamics, a characteristic-wise

hybrid compact-WENO scheme is proposed which couples the Roe type, characteristic-wise compact

scheme with the Roe type characteristic-wise WENO scheme. Thirdly, in order to remove the entropy

violating solutions and the shock instabilities such as the ‘‘carbuncle’’ and the ‘‘odd-even decoupling’’

phenomenon associated with the Roe type scheme, an improved entropy fix procedure is proposed. Nu-

merical tests show a significant improvement in resolution for flows with complex structures over the

WENO scheme as well as the component-wise hybrid scheme.
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